Abstract

A waveguide standard is introduced for validation purposes on the measurement accuracy of electric and magnetic properties of materials at microwave frequencies. The standard acts as a surrogate material with both electric and magnetic properties and is useful for verifying systems designed to characterize engineered materials using the Nicolson-Ross-Weir technique. A genetic algorithm is used to optimize the all-metallic structure to produce a surrogate with both relative permittivity and permeability within a target range across S-band. A mode-matching approach allows the user to predict the material properties with high accuracy, and thus compensate for differences in geometry due to loose fabrication tolerances or limited availability of component parts. The mode-matching method also allows the user to design standards that may be used within other measurement bands. An example standard is characterized experimentally, the errors due to uncertainties in measured dimensions and to experimental repeatability are explored, and the usefulness of the standard as a verification tool is validated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call