Abstract

Composite laminates are becoming increasingly popular in a large variety of applications due to their favourable mechanical properties. However, laminates production processes can lead to various defects in the final material. The most common type is related to thickness variations, e.g. delaminations between layers, which can compromise the mechanical strength of the structure. Therefore, there is a great interest in developing non-destructive and non-contact quality control techniques for composite material assessment to minimize process costs. An interesting approach is the use of laser Doppler vibrometry combined with signal analysis based on Lamb waves propagation. In this work, we used an impulsive force given by a piezoelectric disk to the specimen and a laser Doppler vibrometer acquiring the points velocity over time along a scanning grid on the surface. The specimen is a fiberglass reinforced flat panel with seven different orientated layers which presents a delamination of about 22 mm. The maximum thickness-frequency product achieved in this analysis has been 0.2 MHz∙mm. In contrast to state-of-the-art methods for identifying thickness variation based on local estimation of the principal wave number, the proposed algorithm makes use of a tracking filter of the wave front of the propagating A0 mode waves, returning a final image in polar coordinates. The final information given by the algorithm provides the position of the delamination and, hence, can be used as a pass/failure test. State-of-the-art methods are also able to identify the shape of the defect but pay the price of a higher computational cost by using at least 4D matrix processing unlike our method which only uses 3D matrices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call