Abstract

This paper describes a numerical wave-to-wire model of the second-generation wave energy converter called SEAREV. Governing equations are given in the time domain for the motion of the masses involved in the device and for the hydraulic power take-off (PTO) used to convert the motion into electricity. The hydrodynamic forces are derived using the standard linear potential theory. The memory term in the radiation force is replaced by additional states using the Prony method in order to change the equation of motion into the ordinary differential equation form. The PTO is composed of hydraulic rams, an accumulator, and a hydraulic generator, which delivers electricity when there is enough energy stored in the accumulator. Using the MATLAB Simulink tool, the equation of motion is solved to simulate the full device (including the power take-off) from the incident wave to the electricity delivered to the grid. Simulation results are presented in the paper and comparisons are made with a simpler PTO: a linear damper. They show that the torque applied to the hydraulic PTO must exceed a threshold to start absorbing energy, unlike the linear damping model. They also show that the power production can be very discontinuous, depending on the level of the incident wave power. This is due to the fact that the generator considered can transform the energy stored in the accumulator faster than the energy transmitted by the rams into the accumulator. It could therefore be interesting to use several generators to adapt the electrical energy production to the level of incident wave power, or a generator that could work efficiently at part load in order to achieve continuous energy production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.