Abstract

Energy loss in porous media containing fluids is typically caused by a variety of dynamic mechanisms. In the Biot theory, energy loss only includes the frictional dissipation between the solid phase and the fluid phase, resulting in underestimation of the dispersion and attenuation of the waves in the low frequency range. To develop a dynamic model that can predict the high dispersion and strong attenuation of waves at the seismic band, we introduce viscoelasticity into the Biot model and use fractional derivatives to describe the viscoelastic mechanism, and finally propose a new wave propagation model. Unlike the Biot model, the proposed model includes the intrinsic dissipation of the solid frame. We investigate the effects of the fractional order parameters on the dispersion and attenuation of the P- and S-waves using several numerical experiments. Furthermore, we use several groups of experimental data from different fluid-saturated rocks to testify the validity of the new model. The results demonstrate that the new model provides more accurate predictions of high dispersion and strong attenuation of different waves in the low frequency range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.