Abstract

A new simple aminohydantoin-based fluorescent chemosensor 1 was designed for sequential detection of Zn2+ and pyrophosphate in a near-perfect aqueous solution. 1 exhibited significant fluorescence intensity in the presence of Zn2+, and the resulting 1-Zn2+ complex showed subsequently the fluorescent quenching with pyrophosphate. The detection limit (0.32 μM) of 1 for Zn2+ was far lower than the guideline of World Health Organization in drinking water. 1 was used to determine Zn2+ concentration in various water samples. In addition, chemosensor 1 could be applied to sequentially detect Zn2+ and pyrophosphate in living cells and zebrafish. The sensing mechanism of Zn2+ by 1 was proposed to be an intramolecular charge transfer with theoretical calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.