Abstract

Metal-organic frameworks (MOFs) have shown considerable prospects for sensing pesticide residues. However, the low stability of MOFs in water hinders them from testing food and environmental samples. Herein, we report an easy and cost-efficient synthesis of a water-stable zirconium luminescent MOF (Zr-LMOF) and its application for rapid, sensitive, and in situ detection of organophosphorous pesticides (OPPs). The Zr-MOF is prepared using Zr(IV) and 1,2,4,5-tetrakis(4-carboxyphenyl)benzene. The synthesized Zr-LMOF rapidly absorbs trace amounts of OPP parathion-methyl and indicates its presence. A low limit of detection of 0.115 μg kg-1 (0.438 nM) with a wide linear range from 70 μg kg-1 to 5.0 mg kg-1 was achieved. Satisfactory recoveries ranging from 78% to 107% were obtained for spiked food and environmental samples. Further, the Zr-LMOF was applied to imitate rapid and in situ imaging detection of pesticide residue on fresh produce nondestructively; visual signals appeared under ultraviolet light within 5 min. These results suggest that the Zr-LMOF has the potential for low-cost, rapid, and in situ imaging detection of OPPs contamination via easy-to-read visual signal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call