Abstract
We report the synthesis of a new polythiophene (PT)-based molecular brush (PT-g-PDMA) by growing poly(N,N-dimethylaminoethyl methacrylate) (PDMA) chains from the PT backbone by ATRP. The polymer shows a reversible pH response in aqueous solution. A combination of AFM, light scattering, and 1H NMR measurements indicated that the polymer brush forms a more extended conformation with a decrease in pH from 8 to 2 due to the protonation of the Me2N− groups and increased repulsive interactions among the PDMA side chains, which drives the red shift of the absorption and PL spectra of the PT backbone. The good solubility of this polythiophene-based brush in a wide range of solvents is attractive for the fabrication of functional polymer composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.