Abstract

Since the pioneering discovery of a protein bound to poly(ethylene glycol), the utility of protein-polymer conjugates (PPCs) is rapidly expanding to currently emerging applications. Photoinduced energy/electron-transfer reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization is a very promising method to prepare structurally well-defined PPCs, as it eliminates high-cost and time-consuming deoxygenation processes due to its oxygen tolerance. However, the oxygen-tolerance behavior of PET-RAFT polymerization is not well-investigated in aqueous environments, and thereby the preparation of PPCs using PET-RAFT polymerization needs a substantial amount of sacrificial reducing agents or inert-gas purging processes. Herein a novel water-soluble and biocompatible organic photocatalyst (PC) is reported, which enables visible-light-driven additive-free "grafting-from" polymerizations of a protein in ambient and aqueous environments. Interestingly, the developed PC shows unconventional "oxygen-acceleration" behavior for a variety of acrylic and acrylamide monomers in aqueous conditions without any additives, which are apparently distinct from previously reported systems. With such a PC, "grafting-from" polymerizations are successfully performed from protein in ambient buffer conditions under green light-emitting diode (LED) irradiation, which result in various PPCs that have neutral, anionic, cationic, and zwitterionic polyacrylates, and polyacrylamides. It is believed that this PC will be widely employed for a variety of photocatalysis processes in aqueous environments, including the living cell system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.