Abstract

A new water-soluble tri-tert-butyl-bithiophenesulfonamide (α2-tbS) was synthesized and a comprehensive spectroscopic and photophysical study was undertaken in organic solvents and water at different pH values. In contrast to the behaviour found for the parent (and un-substituted) α,α'-bithiophene (α2), in which radiationless decay processes are the main excited-state deactivation channels, the tert-butylsulfonamide derivative presents a significant fluorescence quantum yield (φF) (ca. one order of magnitude higher than that of α2). The high φF allowed further exploring α2-tbS as a selective fluorimetric sensor for metal ions. A strong selectivity towards Cu(ii) is observed at neutral pH values, whereas at pH = 9.5 a strong quenching upon the addition of Hg(ii) is observed. An additional high sensitivity of 0.64 ± 0.02 ppm towards Cu(ii) was observed, well below 1.25 ppm (∼20 μM), the maximum value allowed in drinking water by the EPA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.