Abstract
The development of a calcium phosphate cement, comprising tetracalcium phosphate (TTCP) and dicalcium phosphate dihydrate (DCPD), that hardens in 14 min with water as the liquid or 6 min with a 0.25 mol/L sodium phosphate solution as the liquid, without using hydroxyapatite (HA) seeds as setting accelerator, is reported. It was postulated that reduction in porosity would increase cement strength. Thus, the effects of applied pressure during the initial stages of the cement setting reaction on cement strength and porosity were studied. The cement powder comprised an equimolar mixture of TTCP and DCPD (median particle sizes 17 and 1.7 microm, respectively). Compressive strengths (CS) of samples prepared with distilled water were 47.6 +/- 2.4 MPa, 50.7 +/- 4.2 MPa, and 52.9 +/- 4.7 MPa at applied pressures of 5 MPa, 15 MPa, and 25 MPa, respectively. When phosphate solution was used, the CS values obtained were 41.5 +/- 2.3 MPa, 37.9 +/- 1.7 MPa, and 38.1 +/- 2.3 MPa at the same pressure levels. Statistical analysis of the results showed that pressure produced an improvement in CS when water was used as liquid but not when the phosphate solution was used. Compared to previously reported TTCP-DCPD cements, the greater CS values and shorter setting times together with a simplified formulation should make the present TTCP-DCPD cement a useful material as a bone substitute for clinical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.