Abstract
Recent exoplanet studies have revealed that the orbital planes of planets are not always aligned with one another or with the equatorial plane of the central star. The misalignment has been ascribed to gravitational scattering by giant planets and/or companion stars1-3 or to fly-bys in stellar cluster environments4. Alternatively, the misalignment could be natal: that is, such planets were born in a warped protostellar disk5,6. Warped disk structures have been reported in some transition disks and protoplanetary disks7,8, but not in the earlier stages of protostar evolution, although such a possibility is suggested by outflow morphology9,10. Here we report millimetre-wavelength dust continuum observations of the young embedded protostar IRAS04368+2557 in the protostellar core L1527 at a distance11 of 137 parsecs; the protostar's disk is almost edge-on12-16. The inner and outer parts of the disk have slightly different orbital planes, connected at 40 to 60 astronomical units from the star, but the disk has point symmetry with respect to the position of the protostar. We interpret it as a warped disk that is rotationally supported. Because there is no evidence for a companion source17,18, the warped structure must be due to either anisotropic accretion of gas with different rotational axes, or misalignment of the rotation axis of the disk with the magnetic field direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.