Abstract

Regular walnut consumption is associated with better health. We have previously shown that eight weeks of walnut consumption (43 g/day) significantly improves lipids in healthy subjects. In the same study, gut microbiome was evaluated. We included 194 healthy subjects (134 females, 63 ± 7 years, BMI 25.1 ± 4.0 kg/m2) in a randomized, controlled, prospective, cross-over study. Following a nut-free run-in period, subjects were randomized to two diet phases (eight weeks each); 96 subjects first followed a walnut-enriched diet (43 g/day) and then switched to a nut-free diet, while 98 subjects followed the diets in reverse order. While consuming the walnut-enriched diet, subjects were advised to either reduce fat or carbohydrates or both to account for the additional calories. Fecal samples were collected from 135 subjects at the end of the walnut-diet and the control-diet period for microbiome analyses. The 16S rRNA gene sequencing data was clustered with a 97% similarity into Operational Taxonomic Units (OTUs). UniFrac distances were used to determine diversity between groups. Differential abundance was evaluated using the Kruskal–Wallis rank sum test. All analyses were performed using Rhea. Generalized UniFrac distance shows that walnut consumption significantly affects microbiome composition and diversity. Multidimensional scaling (metric and non-metric) indicates dissimilarities of approximately 5% between walnut and control (p = 0.02). The abundance of Ruminococcaceae and Bifidobacteria increased significantly (p < 0.02) while Clostridium sp. cluster XIVa species (Blautia; Anaerostipes) decreased significantly (p < 0.05) during walnut consumption. The effect of walnut consumption on the microbiome only marginally depended on whether subjects replaced fat, carbohydrates or both while on walnuts. Daily intake of 43 g walnuts over eight weeks significantly affects the gut microbiome by enhancing probiotic- and butyric acid-producing species in healthy individuals. Further evaluation is required to establish whether these changes are preserved during longer walnut consumption and how these are linked to the observed changes in lipid metabolism.

Highlights

  • The human gut microbiome encompasses approximately 1014 resident microorganisms, mainly consisting of bacteria, and corresponds to 1000 distinct species with a collective genome containing at least 100 times as many genes as the human genome [1]

  • The microbiome analysis was part of our previously published study in which we investigated the effect of regular walnut consumption (43 g/day) on the lipid profile in healthy subjects, resulting in a significant reduction of LDL-cholesterol, apoB, triglycerides and non-HDL-cholesterol after eight weeks of intervention [9]

  • We identified five Operational Taxonomic Units (OTUs) that were significantly associated with walnut consumption

Read more

Summary

Introduction

The human gut microbiome encompasses approximately 1014 resident microorganisms, mainly consisting of bacteria, and corresponds to 1000 distinct species with a collective genome containing at least 100 times as many genes as the human genome [1]. The establishment of high-throughput sequencing allows the metagenome to be studied for broad analyses of intestinal microbiota composition [2]. These microbial communities contribute to host health through various functions including probiotic properties, biosynthesis of vitamins and essential amino acids, as well as production of metabolic byproducts from indigestible dietary constituents. The fact that there is considerable variation in the constituents of the gut microbiota among apparently healthy individuals strengthened the hypothesis that there is a clear link between health, disease and diversity of the human gut microbiome. Diet changes are thought to explain 57% of the total structural variation in the gut microbiota [7]. There is growing interest in modifying the gut microbiota for long-term health benefits

Methods
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.