Abstract

BackgroundThe Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera, Tephritidae) is the most significant insect pest of Australian horticulture. Bactrocera tryoni is controlled using a range of tools including the Sterile Insect Technique (SIT). Mass-rearing and irradiation of pupae in SIT can reduce the fitness and quality of the released sterile insects. Studies have also showed reduced microbial gut diversity in domesticated versus wild tephritids.ResultsTransmission electron microscopy confirmed the presence of the bacterial isolates in the mid-gut of mass-reared larvae, and plate counts from individual larval guts showed increased numbers of bacteria in supplemented larvae. Several developmental and fitness parameters were tested including larval development time (egg-hatch to pupation), pupal weight, emergence, flight ability, sex-ratio, and time to adult eclosion (egg-hatch to adult eclosion). Enterobacter sp. and Asaia sp. shortened larval development time, while this was delayed by Lactobacillus sp., Leuconostoc sp. and a blend of all four bacteria. The mean time from egg hatch to adult eclosion was significantly reduced by Leuconostoc sp. and the blend for males and females, indicating that the individual bacterium and consortium affect flies differently depending on the life stage (larval or pupal). There was no impact of bacterial supplemented larvae on pupal weight, emergence, flight ability, or sex ratio.ConclusionsOur findings show that bacteria fed to the larval stage of B. tryoni can impart fitness advantages, but the selection of probiotic strains (individual or a consortium) is key, as each have varying effects on the host. Bacteria added to the larval diet particularly Leuconostoc sp. and the blend have the capacity to reduce costs and increase the number of flies produced in mass-rearing facilities by reducing time to adult eclosion by 1.3 and 0.8 mean days for males, and 1.2 and 0.8 mean days for females.

Highlights

  • The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera, Tephritidae) is the most significant insect pest of Australian horticulture

  • A study feeding a blend of three enteric bacteria Citrobacter freundii, Enterobacter sp., and Klebsiella pneumonia to mass-reared Mediterranean fruit fly, Ceratitis capitata Wiedemann larvae, showed increased male and female pupal weight, larger sized males, increased lab survival under stress, and enhanced male sexual performance [8]

  • Phylogenetic identification of wild B. tryoni bacterial candidates using 16S rRNA Phylogenetic analyses indicated that each bacterial strain isolated from the wild B. tryoni gut

Read more

Summary

Introduction

The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera, Tephritidae) is the most significant insect pest of Australian horticulture. A study feeding a blend of three enteric bacteria Citrobacter freundii, Enterobacter sp., and Klebsiella pneumonia to mass-reared Mediterranean fruit fly, Ceratitis capitata Wiedemann larvae (where male pupae were subsequently irradiated under SIT), showed increased male and female pupal weight, larger sized males, increased lab survival under stress, and enhanced male sexual performance [8]. Another enteric bacterial species, Klebsiella oxytoca increased mating competiveness of bacterial supplemented sterile adult male C. capitata for wild females against wild males, inhibited female receptivity more efficiently than sugar only fed males, and increased survival under stress [11]. Enterobacter sp. was a target probiotic fed to larvae of Zeugodacus cucurbitae Coquillett (melon fly) with significant increases in pupal weight, survival rate, and size of flies were significantly increased [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.