Abstract

Van der Waals dielectrics, such as hexagonal boron nitride, are widely used to preserve the intrinsic properties of two-dimensional semiconductors in electronic devices. However, fabricating these materials on the wafer scale and integrating them with two-dimensional semiconductors is challenging because their synthesis typically requires mechanical exfoliation or vapour deposition processes. Here we show that a high-κ van der Waals dielectric can be created on wafer scales using an inorganic molecular crystal film of antimony trioxide (Sb2O3) fabricated via thermal evaporation deposition. Monolayer molybdenum disulfide (MoS2) field-effect transistors supported by this dielectric substrate exhibit enhanced electron mobility—from 26 cm2 V−1 s−1 to 145 cm2 V−1 s−1—and reduced transfer-curve hysteresis compared with when using SiO2 substrate. MoS2 transistors directly gated by the Sb2O3 film can operate with a supply voltage of 0.8 V, on/off ratio of 108 and subthreshold swing of 64 mV dec−1 at 300 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call