Abstract
Automatic wafer prealignment is an important process in wafer manufacturing, whereby its flat edge is set at a predefined angle and its center is set in a predefined position; translational and rotational movement compensate for deviation of the wafer. However, as the traditional wafer prealignment algorithm depends on marked templates at the training stage when the type of wafer is changed, the templates need to be retrained. This paper proposes a new wafer prealignment algorithm, based on Fourier transform for orientation prealignment and least square regression for position prealignment, which will automatically adapt to different types of wafers in 2-D space. Results from experiments with the proposed algorithm on a laser-scribing machine using two types of wafer show that the orientation prealignment achieved an accuracy of 0.05°, the position prealignment achieved an accuracy of 5 pixels, and the average operation time was approximately 1.5 s. As prealignment algorithm therefore meets real-time efficiency and precision requirements, it is suitable for use with semiconductor devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Automation Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.