Abstract
The Internet of Things communication protocol is prone to security vulnerabilities when facing increasing types and scales of network attacks, which can affect the communication security of the Internet of Things. It is crucial to effectively detect these vulnerabilities in order to improve the security of IoT communication protocols and promptly fix them. Therefore, this study proposes a distributed IoT communication protocol vulnerability detection method based on an improved parallelized fuzzy testing algorithm. Firstly, based on design principles and by comparing different communication protocols, a communication architecture for the distribution network's Internet of Things was constructed, and the communication protocols were formalized and decomposed. Next, preprocess the vulnerability detection samples, and then use genetic algorithm to improve the parallelized fuzzy testing algorithm to perform vulnerability detection. Through this improved algorithm, the missed detection rate and false detection rate can be effectively reduced, thereby improving the security of IoT communication protocols. The experimental results show that the highest missed detection rate of this method is only 4.0 %, and the false detection rate is low, with high detection efficiency. This indicates that the method has good performance and reliability in detecting vulnerabilities in IoT communication protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.