Abstract

Presentamos el estudio general de un problema clásico de vaciado de depósitos cuya forma es un sólido de revolución y que tiene un agujero circular en su base por donde se desaloja el líquido. Para ello, obtenemos la ecuación diferencial que describe la altura del líquido contenido en el depósito en cada instante temporal, h(t), así como el tiempo de vaciado, T. Ambas respuestas se dan en términos de las características geométricas de la curva de revolución que genera la forma sólida del depósito y del coeficiente de fricción del líquido al producirse su desalojo del depósito. Aunque se proporcionan respuestas explicitas de h(t) (en el caso de un cilindro) y de T (en el caso de un cilindro, un cono truncado y una esfera), mostramos que, en general, no es posible obtener expresiones explícitas de ambas cantidades. Para ilustrar esta última situación se muestran dos ejemplos donde describimos una metodología computacional para determinar h(t) y T, la cual es fácilmente adaptable para abordar el caso general de cualquier curva de revolución admisible. En la discusión de los distintos resultados que se obtienen a lo largo del trabajo se hace uso de diferentes estrategias propias del proceso de Resolución de Problemas, como el análisis de lo particular a lo general, el estudio de casos límites, la coherencia de la interpretación física de la respuesta a partir del análisis de la sensibilidad de la misma ante el cambio de uno de los parámetros del modelo, etc., que están diseñadas para ayudar a que las ideas expuestas a lo largo del artículo puedan aprovecharse en el aula.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.