Abstract
One of the foundational and key means of optimizing network service in the field of network security is traffic identification. Various data transmission encryption technologies have been widely employed in recent years. Wrongdoers usually bypass the defense of network security facilities through VPN to carry out network intrusion and malicious attacks. The existing encrypted traffic identification system faces a severe problem as a result of this phenomenon. Previous encrypted traffic identification methods suffer from feature redundancy, data class imbalance, and low identification rate. To address these three problems, this paper proposes a VPN-encrypted traffic identification method based on ensemble learning. Firstly, aiming at the problem of feature redundancy in VPN-encrypted traffic features, a method of selecting encrypted traffic features based on mRMR is proposed; secondly, aiming at the problem of data class imbalance, improving the Xgboost identification model by using the focal loss function for the data class imbalance problem; Finally, in order to improve the identification rate of VPN-encrypted traffic identification methods, an ensemble learning model parameter optimization method based on optimal Bayesian is proposed. Experiments revealed that our proposed VPN-encrypted traffic identification method produced more desirable VPN-encrypted traffic identification outcomes. Meanwhile, using two encrypted traffic datasets, eight common identification algorithms are compared, and the method appears to be more accurate in identifying encrypted traffic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.