Abstract

The organ or tumor activity is not uniform due to inhomogeneous expression/distributions of receptors/antigens and the nonuniform vascularization of the tumor tissue. However, most patient-specific three-dimensional Monte-Carlo methods for radionuclide dosimetry have dealt with quasi-homogeneous activity distributions. A voxel-by-voxel activity sample algorithm (VM) without artifacts is presented to calculate the dose of the heterogeneous activity distribution for radionuclide dosimetry. The source particle location is sampled according to the activity spatial distribution. The source particle weight is imparted by the relative activity concentration of its origination voxel. This algorithm is applied to calculate the dose volume histogram for multiple independent activity regions with Gauss diffusion activity distributions and then compared with the level partition method (LM). The minimal response and the mean tolerant initial total activity threshold required by tumor control probability and normal tissue complication probability for radioimmunotherapy ((131)I-RIT) also were evaluated by the voxel-by-voxel sample algorithm and the LM. The effective clearance half-time is assumed to be equal to its physical half-life (i.e., 8.02 days for (131)I). The result shows that the new algorithm is more consistent with the weighted superposition of the quasi-homogeneous activity distribution than the LM, especially for the multiple independent activity regions composed of different amounts of voxels. The new algorithm effectively avoids the leveling/binning artifacts to the heterogeneous activity distribution. The (131)I-RIT simulation also showed that the minimal response initial total activity threshold of tumors will be much more than the mean tolerant initial total activity threshold of normal organs (e.g., kidney) with the activity heterogeneous grade deteriorating. A VM is presented to simulate the dose of the heterogeneous activity distribution for radionuclide dosimetry. The new algorithm effectively avoids the leveling/binning artifacts to the heterogeneous activity distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call