Abstract

In soft robotics, the ability to generate advanced kinematics is a necessary step toward any more sophisticated tasks such as microobject manipulation, locomotion, or configuration changes. To this end, herein, a modular voxel‐based methodology adaptable to any scale and with any soft transducer is presented. The methodology is implemented at the micrometer scale with a one‐step fabrication process. An innovative gray‐tone lithography method using the two‐photon polymerization of photosensitive poly(N‐isopropylacrylamide) hydrogel is developed to print the voxels. Bending, compression, and twisting voxels are designed, printed, and characterized. A voxel consists of an isotropically shrinking active material reinforced adequately with a passive pattern. Each elementary voxel deforms along one degree of freedom and is a building block for superstructures able of advanced kinematics. With a side length of 40 μm, the bending voxel achieves a bending angle of 25º or curvature of . The compression voxel reaches an actuation strain of 40%, and the twisting voxel bends up to 18º. Advanced kinematics are demonstrated by printing complex structures composed of multiple elementary voxels. Herein, a foundation toward soft microrobots capable of performing complex tasks is constituted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.