Abstract

This paper introduces a novel physically-based vortex fluid model for films, aimed at accurately simulating cascading vortical structures on deforming thin films. Central to our approach is a novel mechanism decomposing the film's tangential velocity into circulation and dilatation components. These components are then evolved using a hybrid particle-mesh method, enabling the effective reconstruction of three-dimensional tangential velocities and seamlessly integrating surfactant and thickness dynamics into a unified framework. By coupling with its normal component and surface-tension model, our method is particularly adept at depicting complex interactions between in-plane vortices and out-of-plane physical phenomena, such as gravity, surfactant dynamics, and solid boundary, leading to highly realistic simulations of complex thin-film dynamics, achieving an unprecedented level of vortical details and physical realism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.