Abstract

The ability of a soluble heparin-binding oligopeptide sequence derived from the von Willebrand factor (vWF) to modulate the adhesion and chemokinetic migration behavior of arterial smooth muscle cells was assessed using a novel glass microsphere centrifugation assay and automated time-lapse fluorescence videomicroscopy, respectively. Treatment of cells grown on fibronectin-coated substrates with the heparin-binding peptide resulted in the disassembly of focal adhesions, as assessed by immunohistochemical staining. These observations were consistent with six-fold decrease in cell–substrate adhesive strength (P<0.001), a biphasic effect on migration speed (P<0.05), as well as a dose-dependent reduction in the percentage of motile cells and the cell dispersion coefficient (μ=S2T/2). The specificity of this response to the vWF-derived heparin-binding peptide was supported by the absence of an observed effect in the presence of either a scrambled peptide or a consensus heparin-binding peptide sequence of similar heparin affinity. These data support the notion that competitive interactions between cell surface heparan sulfates with heparin-binding peptide domains located in soluble peptide fragments may modulate chemokinetic cell migration behavior and other adhesion-related processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call