Abstract
Optical triangulation, an active reconstruction technique, is known to be an accurate method but has several shortcomings due to occlusion and laser reflectance properties of the object surface, that often lead to holes and inaccuracies on the recovered surface. Shape from silhouette, on the other hand, as a passive reconstruction technique, yields robust, hole-free reconstruction of the visual hull of the object. In this paper, a hybrid surface reconstruction method that fuses geometrical information acquired from silhouette images and optical triangulation is presented. Our motivation is to recover the geometry from silhouettes on those parts of the surface which the range data fail to capture. A volumetric octree representation is first obtained from the silhouette images and then carved by range points to amend the missing cavity information. An isolevel value on each surface cube of the carved octree structure is accumulated using local surface triangulations obtained separately from range data and silhouettes. The marching cubes algorithm is then applied for triangulation of the volumetric representation. The performance of the proposed technique is demonstrated on several real objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.