Abstract

AbstractWe demonstrate essential coexistence of hyperbolic and non-hyperbolic behavior in the continuous-time case by constructing a smooth volume preserving flow on a five-dimensional compact smooth manifold that has non-zero Lyapunov exponents almost everywhere on an open and dense subset of positive but not full volume and is ergodic on this subset while having zero Lyapunov exponents on its complement. The latter is a union of three-dimensional invariant submanifolds, and on each of these submanifolds the flow is linear with Diophantine frequency vector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.