Abstract
This paper reports a systematic method for the computer-aided-design (CAD) simulation of GaN FET power amplifiers (PAs). The core of the proposal is a Volterra-based behavioral model (BM) with multi-spectral and multi-node capabilities, which black-box structure is formally derived from a circuit-level representation of the PA and accounts for both short and long-term memory effects. Starting with the equivalent circuit of a typical FET device with thermal power feedback, the structures of the kernels for the gate, drain and thermal nodes are developed and are shown to be dependent on the frequency response of the PA terminating impedances and thermal filter. The model has been applied to simulate the nonlinear response of a typical PA circuit, showing the ability of the proposed model to provide an accurate prediction of multi-spectral, multi-node characteristics, including AM/AM-AM/PM conversion, spectral regrowth, intermodulation, and temperature rise, under diverse input signal waveforms and bandwidths. These results have been successfully compared with commercial CAD tools based on harmonic balance or envelope simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.