Abstract

An enantioselective voltammetric sensor based on a glassy carbon electrode modified with a composite of a polyelectrolyte complex of chitosan, Carboblack C graphitized thermal carbon black, and 3,4,9,10-perylenetetracarboxylic acid is developed for the recognition and determination of tyrosine enantiomers. The enantioselectivity of the sensor is due to the formation of self-organizing chiral nanoclusters of 3,4,9,10-perylenetetracarboxylic acid. The electrochemical and analytical characteristics of the sensor are studied. The proposed sensor is used to recognize and determine L- and D-enantiomers of tyrosine in samples of urine and human blood plasma, as well as in a mixture. To increase the probability of the recognition of tyrosine enantiomers in determining them in a mixture, the chemometric method of projection to latent structures is used. It is shown that the proposed sensor ensures the determination of the ratio of L- and D-enantiomers of tyrosine in a mixture with a high probability and a relative error of less than 8%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.