Abstract

Ascraeus Mons is one of the largest volcanoes on Mars. It is replete with well‐preserved features that can be used to understand its volcanotectonic evolution. Previous studies of this volcano focused on specific features, and were limited by the quality and coverage of contemporary data. Our objective is to review and enhance the existing developmental model for Ascraeus by considering all endogenic surface features on the volcano. We surveyed the volcano's caldera complex, flank terraces, pit structures, sinuous rilles, arcuate grabens, and small vents. We report the spatial and temporal distributions of these features, appraise their proposed formation mechanisms in light of our mapping results, and propose a detailed geological history for Ascraeus Mons. An initial shield‐building phase was followed by the formation of a summit caldera complex and small parasitic cones, while compression due to flexure of the supporting basement led to extensive terracing of the shield flanks. An eruptive hiatus followed, ending with the construction of expansive rift aprons to the northeast and southwest. Against later, extensive flank resurfacing in the late Amazonian, continued flexure formed arcuate grabens concentric to the edifice. Localized eruption and surface flow of a fluid agent (lava and/or water) from within the volcano then produced a population of rilles on the lower flanks. Finally, in a change of flank tectonic regime from compression to extension, pit crater chains and troughs developed on the main shield and rift aprons, eventually coalescing to form large embayments at the northeast and southwest base of the volcano.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.