Abstract
We present an elastic damage constitutive model for polymeric foam based on thermodynamics framework to consider the effects of anisotropy and the growth and coalescence of cavities. The evolution equation of the proposed model describes the material behavior sustaining anisotropic and unilateral damage. To carry out finite element analysis, the material properties for various polymeric foams are applied to the proposed damage model; we thus implement the proposed damage model in the commercial finite element program as a user-defined material subroutine. In order to validate the proposed anisotropic damage model, the numerical results are compared to the results of a series of tensile and compressive tests on various polymeric foams. Additionally, we propose the failure criterion for this damage model as based on the mass-dependent energy per unit mass at failure. The developed damage model can be used for further research on damage mechanics and finite element analysis of polymeric foams in continuum mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Continuum Mechanics and Thermodynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.