Abstract

Corner detection is a low-level feature detection operator that is of great use in image processing applications, for example, optical flow and structure from motion by image correspondence. The detection of corners is a computationally intensive operation. Past implementations of corner detection techniques have been restricted to software. In this paper we propose an efficient very large-scale integration (VLSI) architecture for detection of corners in images. The corner detection technique is based on the half-edge concept and the first directional derivative of Gaussian. Apart from the location of the corner points, the algorithm also computes the corner orientation and the corner angle and outputs the edge map of the image. The symmetrical properties of the masks are utilized to reduce the number of convolutions effectively, from eight to two. Therefore, the number of multiplications required per pixel is reduced from 1800 to 392. Thus, the proposed architecture yields a speed-up factor of 4.6 over conventional convolution architectures. The architecture uses the principles of pipelining and parallelism and can be implemented in VLSI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.