Abstract

The design of a single-chip VLSI analog computer fabricated in a 0.25-/spl mu/m CMOS process is described. It contains 80 integrators, 336 other linear and nonlinear analog functional blocks, switches for their interconnection, and circuitry to enable the system's programing and control. The IC is controlled, programmed and measured by a PC via a data acquisition card. This arrangement has been used to simulate ordinary differential equations (ODEs), partial differential equations, and stochastic differential equations with moderate accuracy, significantly faster than a modern workstation. Techniques for using the digital computer to refine the solution from the analog computer are presented. Solutions from the analog computer have been used to accelerate a digital computer's solution of the periodic steady state of an ODE by more than 10/spl times/. The IC occupies 1 cm/sup 2/ and consumes 300 mW. An analysis has been done showing that the analog computer dissipates 0.02% to 1% of the energy of a general purpose digital microprocessor and about 2% to 20% of the energy of a digital signal processor, when solving the same differential equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.