Abstract
Vitronectin is an abundant multifunctional glycoprotein found in serum, the extracellular matrix, and bone, and is involved in diverse physiological processes. Here, we developed a new bioactive dimeric peptide (VnP-8-DN1 dimer) from a human vitronectin-derived motif (IDAAFTRINCQG; residues 206–217; VnP-8) via removal of an isoleucine residue at the N-terminus of VnP-8 and spontaneous air oxidation. The VnP-8-DN1 dimer potently enhanced cell attachment activity, and this activity was mediated by binding to cellular heparan sulfate proteoglycan receptors. Moreover, the VnP-8-DN1 dimer suppressed osteoclast differentiation by blocking the early stage of osteoclastogenesis induced by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). Furthermore, the VnP-8-DN1 dimer decreased the bone-resorbing activity of osteoclasts and increased the survival of osteoclast precursor cells by decreasing the cellular level of c-Fms and reducing RANK expression. Taken together, these results demonstrate that the VnP-8-DN1 dimer inhibits the early stages of M–CSF– and RANK-induced osteoclast differentiation by binding to c-Fms and inhibiting M-CSF signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.