Abstract

Access to new non-canonical amino acid residues is crucial for medicinal chemistry and chemical biology. Analogues of the amino acid methionine have been far less explored-despite their use in biochemistry, pharmacology and peptide bioconjugation. This is largely due to limited synthetic access. Herein, we exploit a new disconnection to access non-natural methionines through the development of a photochemical method for the radical α-C-H functionalization of sulfides with alkenes, in water, using inexpensive and commercially-available riboflavin (vitamin B2) as a photocatalyst. Our photochemical conditions allow the two-step synthesis of novel methionine analogues-by radical addition to unsaturated amino acid derivatives-and the chemoselective modification of peptide side-chains to yield non-natural methionine residues within small peptides. The mechanism of the bio-inspired flavin photocatalysis has been probed by experimental, DFT and TDDFT studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call