Abstract
Owing to the high incidence rate and the severe impact of skin cancer, the precise diagnosis of malignant skin tumors is a significant goal, especially considering treatment is normally effective if the tumor is detected early. Limited published histopathological image sets and the lack of an intuitive correspondence between the features of lesion areas and a certain type of skin cancer pose a challenge to the establishment of high-quality and interpretable computer-aided diagnostic (CAD) systems. To solve this problem, a light-weight attention mechanism-based deep learning framework, namely, DRANet, is proposed to differentiate 11 types of skin diseases based on a real histopathological image set collected by us during the last 10 years. The CAD system can output not only the name of a certain disease but also a visualized diagnostic report showing possible areas related to the disease. The experimental results demonstrate that the DRANet obtains significantly better performance than baseline models (i.e., InceptionV3, ResNet50, VGG16, and VGG19) with comparable parameter size and competitive accuracy with fewer model parameters. Visualized results produced by the hidden layers of the DRANet actually highlight part of the class-specific regions of diagnostic points and are valuable for decision making in the diagnosis of skin diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.