Abstract

Cognitive flexibility is the innate ability of the brain to change mental processes and to modify behavioral responses according to an ever-changing environment. As our brain has a limited capacity to process the information of our surroundings in any given moment, it uses sets as a strategy to aid neural processing systems. With assessing the capability of shifting between task sets, it is possible to test cognitive flexibility and executive functions. The most widely used neuropsychological task for the evaluation of these functions in humans is the Wisconsin Card Sorting Test (WCST), which requires the subject to alter response strategies and use previously irrelevant information to solve a problem. The test has proven clinical relevance, as poor performance has been reported in multiple neuropsychiatric conditions. Although, similar tasks have been used in pre-clinical rodent research, many are limited because of their manual-based testing procedures and their hardware attenuates neuronal recordings. We developed a two-choice rule-switch task whereby head-fixed C57BL/6 mice had to choose correctly one of the two virtual objects presented to retrieve a small water reward. The animals learnt to discriminate the visual cues and they successfully switched their strategies according to the related rules. We show that reaching successful performance after the rule changes required more trials in this task and that animals took more time to execute decisions when the two rules were in conflict. We used optogenetics to inhibit temporarily the medial prefrontal cortex (mPFC) during reward delivery and consumption, which significantly increased the number of trials needed to perform the second rule successfully (i.e., succeed in switching between rules), compared to control experiments. Furthermore, by assessing two types of error animals made after the rule switch, we show that interfering with the positive feedback integration, but leaving the negative feedback processing intact, does not influence the initial disengagement from the first rule, but impedes the maintenance of the newly acquired response set. These findings support the role of prefrontal networks in mice for cognitive flexibility, which is impaired during numerous neuropsychiatric diseases, such as schizophrenia and depression.

Highlights

  • Cognitive flexibility is a crucial executive function which allows adaptive behavior by switching between different thoughts and actions, the complex rules of which are yet unknown

  • We introduce a visual two-choice rule-switching task developed for head-fixed mice, which opens up new possibilities in preclinical research of cognitive flexibility

  • Mice learned to execute choices with high precision through an air-supported ball connected to a virtual reality (VR) system to follow abstract rules contingent upon the size and the pattern of the presented cues

Read more

Summary

Introduction

Cognitive flexibility is a crucial executive function which allows adaptive behavior by switching between different thoughts and actions, the complex rules of which are yet unknown. Cognitive flexibility in humans has been measured with various behavioral methods, such as the Wisconsin Card Sorting Test (WCST; Berg, 1948) and the Cambridge Neuropsychological Test Automated Battery Intra-Extra Dimensional Set Shifting task (Robbins, 2000). These assessments measure rule acquisition and rule switching ability by a set of compound visual stimuli, with two or more superimposed perceptual dimensions. Many of the patients with the aforementioned conditions can resolve the initial rule for sorting or recognize the rule change, but because of perseveration of pre-potent responses, they have difficulties with adjusting their behavior once the relevance of categories changes

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call