Abstract

To provide the best return on investments it is often required to assess the suitability of a site for installation of solar photovoltaic panel and quantify shading and atmospheric losses. The shading analysis is generally done using light detection and ranging or 3D geographic information system-based approaches which are cost-effective only for large-scale analysis. In several cases, particularly in developing countries, LiDAR data or 3D GIS are not available. In this study, a terrestrial image-based system is developed to accurately estimate solar insolation at a place. The positions of obstructions obtained using captured images are integrated with sun position model to provide solar insolation and optimal solar panel orientation. To further refine the result, the effect of sky conditions on the obtained solar insolation is also considered at monthly and yearly scale. About 40% reduction in solar insolation is observed due to shading which rose to 51% when the atmospheric conditions were included in the analysis of the selected sites. Further, an approach to estimate solar insolation over an area using some discrete point location is also presented and demonstrated. Results from 30 sites show that the obtained error in insolation estimate over an area is within 4%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.