Abstract

A fast and effective quench detection method is especially challenging in the development of high-field high-temperature superconducting (HTS) magnets for their safe operations and reliably releasing the stored energy during a quench. The occurrence and propagation of a quench are often accompanied by strong thermal and magneto-mechanical responses within superconducting magnets. Aiming to detect a quench in the whole process and capture the thermoelastic behavior associated with it, a new detection technique with a visual and full-field perception based on the digital image correlation (DIC) method is proposed in the present study. The experiment of a quench triggered thermally by a local spot heater is conducted for a YBCO coated conductor tape in a cryogenic chamber. The evolution and characteristics of the full-field strain in the HTS tape during the processes of a non-quench, a quench occurrence and quench propagation are intuitively presented with experimental observations. For the comparison purpose, the conventional quench detection methods by monitoring temperature and voltage signals during a quench are also utilized experimentally. The results verify the visual and full-field quench detection method, which uses a criterion of thermoelastic strain-rate for the quench occurrence and the evolution of strain contours for the normal zone propagating aspect. Additionally, a numerical quench model of coupled thermoelasticity to simulate the experiment is established and solved with the aid of Comsol multiphysics software. The quantitative results are in good agreement with the experimental measurements to prove the reliability and availability of the developed detection method. Since the DIC method is non-contact and insensitive to intense electromagnetic interferences, it is expected to provide a new technique on quench issues and some basic measurements on strain/stress behaviors in extreme environments of high-field HTS magnets in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call