Abstract

In this paper, we examine the relation between onomatopoeia and images using a large number of Web images. The objective of this paper is to examine if the images corresponding to Japanese onomatopoeia words which express the feeling of visual appearance can be recognized by the state-of-the-art visual recognition methods. In our work, first, we collect the images corresponding to onomatopoeia words using an Web image search engine, and then we filter out noise images to obtain clean dataset with automatic image re-ranking method. Next, we analyze the recognizability of various kinds of onomatopoeia images using improved Fisher vector (IFV) and deep convolutional neural network (DCNN) features. In addition, we collect images corresponding to the pairs of nouns and onomatopoeia words, and we examine if the images associated with the same nouns and the different onomatopoeia words are visually discriminable or not. By the experiments, it has been shown that the DCNN features extracted from the layer 7 of Overfeat's network pre-trained with the ILSVRC 2013 data have prominent ability to represent onomatopoeia images, and most of the onomatopoeia words have visual characteristics which can be recognized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.