Abstract

This study leverages machine learning to enhance the diagnostic accuracy of COVID-19 using chest X-rays. The study evaluates various architectures, including efficient neural networks (EfficientNet), multiscale vision transformers (MViT), efficient vision transformers (EfficientViT), and vision transformers (ViT), against a comprehensive open-source dataset comprising 3616 COVID-19, 6012 lung opacity, 10192 normal, and 1345 viral pneumonia images. The analysis, focusing on loss functions and evaluation metrics, demonstrates distinct performance variations among these models. Notably, multiscale models like MViT and EfficientNet tend towards overfitting. Conversely, our vision transformer model, innovatively fine-tuned (FT) on the encoder blocks, exhibits superior accuracy: 95.79% in four-class, 99.57% in three-class, and similarly high performance in binary classifications, along with a recall of 98.58%, precision of 98.87%, F1 score of 98.73%, specificity of 99.76%, and area under the receiver operating characteristic (ROC) curve (AUC) of 0.9993. The study confirms the vision transformer model’s efficacy through rigorous validation using quantitative metrics and visualization techniques and illustrates its superiority over conventional models. The innovative fine-tuning method applied to vision transformers presents a significant advancement in medical image analysis, offering a promising avenue for improving the accuracy and reliability of COVID-19 diagnosis from chest X-ray images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call