Abstract

We present the design and implementation of a real-time computer vision system for a rotorcraft unmanned aerial vehicle to land onto a known landing target. This vision system consists of customized software and off-the-shelf hardware which perform image processing, segmentation, feature point extraction, camera pan/tilt control, and motion estimation. We introduce the design of a landing target which significantly simplifies the computer vision tasks such as corner detection and correspondence matching. Customized algorithms are developed to allow for realtime computation at a frame rate of 30 Hz. Such algorithms include certain linear and nonlinear optimization schemes for model-based camera pose estimation. We present results from an actual flight test which show the vision-based state estimates are accurate to within 5 cm in each axis of translation, and 5 degrees in each axis of rotation, making vision a viable sensor to be placed in the control loop of a hierarchical flight management system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.