Abstract

The paper presents a Fuzzy Q-Learning (FQL) and optical flow based autonomous navigation approach. The FQL method takes decisions in an unknown environment and without mapping, using motion information and through a reinforcement signal into an evolutionary algorithm. The reinforcement signal is calculated by estimating the optical flow densities in areas of the camera to determine whether they are “dense” or “thin” which has a relationship with the proximity of objects. The results obtained show that the present approach improves the rate of learning compared with a method with a simple reward system and without the evolutionary component. The proposed system was implemented in a virtual robotics system using the CoppeliaSim software and in communication with Python.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.