Abstract
The task of automatic gesture spotting and segmentation is challenging for determining the meaningful gesture patterns from continuous gesture-based character sequences. This paper proposes a vision-based automatic method that handles hand gesture spotting and segmentation of gestural characters embedded in a continuous character stream simultaneously, by employing a hybrid geometrical and statistical feature set. This framework shall form an important constituent of gesture-based character recognition (GBCR) systems, which has gained tremendous demand lately as assistive aids for overcoming the restraints faced by people with physical impairments. The performance of the proposed system is validated by taking into account the vowels and numerals of Assamese vocabulary. Another attribute to this proposed system is the implementation of an effective hand segmentation module, which enables it to tackle complex background settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.