Abstract

Molecular computation is increasingly attractive as a tool for medical and biological research because of its programmability and controllability. Herein, a novel visibly observable supramolecular system that can execute multi-level logic functions on a uniform platform was constructed. By employing some programming factors, we succeeded in not only constructing a whole set of contrary logic pairs, but also building up a logic network that can implement advanced functions. Further, the platform is applied to sense thiols in specific environments. The developed method can efficiently filter signals of thiols in intracellular conditions and measure cysteine levels quantitatively in serum conditions. The visual readout makes the method particularly suitable for point-of-care testing. The supramolecule-based platform illustrates not only an incremental advance for the construction of programmable molecular logic systems, but also viable applications in intelligent thiol analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.