Abstract

AbstractToward supporting people’s wayfinding activities, we propose a Visible Light Communication (VLC) cooperative system with guidance services and fog/edge based architectures. The dynamic navigation system is made up of several transmitters (ceiling luminaries) that transmit map information and path messages for wayfinding. Each luminaire includes one of two types of controller: a “mesh” controller that communicates with other devices in its vicinity, effectively acting as a router for messages to other nodes in the network, or a “mesh/cellular” hybrid controller that communicates with the central manager via IP. Edge computing can be performed by these nodes, which act as border routers. Mobile optical receivers, using joint transmission, collect the data at high frame rates, extracts theirs location to perform positioning and, concomitantly, the transmitted data from each transmitter. Each luminaire, through VLC, reports its geographic position and specific information to the users, making it available for whatever use. A bidirectional communication process is carried out and the optimal path through the venue is determined. Results show that the system offers not only self-localization, but also inferred travel direction and the ability to interact with received information optimizing the route towards a static or dynamic destination.KeywordsVisible Light CommunicationAssisted indoor navigationBidirectional communicationOptical sensorsTransmitter/receiverEdge-Fog architecture

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.