Abstract

Because of surface structural constraint and thermal management requirement, visible - infrared compatible camouflage is still a great challenge. In this study, we introduce a 2D periodic aperture array into ZnO/Ag/ZnO film to realize visible-infrared compatible camouflage with a performance of thermal management by utilizing the extraordinary optical transmission in a dielectric/metal/dielectric (D/M/D) structure. Because of the high visible transmittance of the D/M/D structure, when applied on a visible camouflage coating, the beneath coating can be observed, realizing arbitrary visible camouflage. Due to the perforated Ag layer, both low emittances in 3~5 μm, 8~14 μm for infrared camouflage and high emittance in 5~8 μm for heat dissipation by radiation are achieved theoretically and experimentally. The fabricated photonic crystal exhibits high-temperature infrared camouflage in two atmospheric windows. With the same heating power of 0.40 W/cm2, this photonic crystal is 12.2 ℃ cooler than a sample with a low-emittance surface. The proposed visible - infrared compatible camouflage photonic crystal with the performance of thermal management provides a guideline on coordinated control of light and heat, indicating a potential application in energy & thermal technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call