Abstract

We describe a unique method to measure the viscosity of liquids based on the fluid mechanics of thin films. A drop of sample is spread over a substrate by contacting a blade with the drop and moving the blade across the substrate. The thickness of the film is determined by the capillary number, which measures the competition between the viscous force that smears the liquid over the glass slide and the surface tension that resists the deformation of the interface. We show that the length of the smear for a fixed sample volume is also set by capillary number and can be used as a reliable measure of fluid viscosity. The technique is especially suitable for viscosity measurements of biological fluids where viscosities are low and sample sizes are small. The technique can detect small changes in blood viscosity enabling it to be used as a non-specific, screening tool for diseases and therapeutic interventions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call