Abstract
The main purpose of this paper is to introduce a viscosity-type iterative algorithm for approximating a common solution of a split variational inclusion problem and a fixed point problem. Using our algorithm, we state and prove a strong convergence theorem for approximating a common solution of a split variational inclusion problem and a fixed point problem for a multivalued quasi-nonexpansive mapping between a Hilbert space and a Banach space. Furthermore, we applied our results to study a split convex minimization problem. Also, a numerical example of our result is given. Our results extend and improve the results of Byrne et al. (J. Nonlinear Convex Anal. 13, 759–775, 2012), Moudafi (J. Optim. Theory Appl. 150, 275–283, 2011), Takahashi and Yao (Fixed Point Theory Appl. 2015, 87, 2015), and a host of other important results in this direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.