Abstract
The extracellular matrix (ECM) comprises a large proportion of the lung parenchymal tissue and is an important contributor to the mechanical properties of the lung. The lung tissue is a biologically active scaffold with a complex ECM matrix structure and composition that provides physical support to the surrounding cells. Nearly all respiratory pathologies result in changes in the structure and composition of the ECM; however, the impact of these alterations on the mechanical properties of the tissue is not well understood. In this study, a novel network model was developed to incorporate the combinatorial effect of lung tissue ECM constituents such as collagen, elastin and proteoglycans (PGs) and used to mimic the experimentally derived length-tension response of the tissue to uniaxial loading. By modelling the effect of collagen elasticity as an exponential function with strain, and in concert with the linear elastic response of elastin, the network model's mechanical response matched experimental stress-strain curves from the literature. In addition, by incorporating spring-dashpot viscoelastic elements, to represent the PGs, the hysteresis response was also simulated. Finally, by selectively reducing volume fractions of the different ECM constituents, we were able to gain insight into their relative mechanical contribution to the larger scale tissue mechanical response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.