Abstract

Gastrointestinal (GI) diseases are often associated with hypertrophy of the layers of the GI wall, along with dilatation and a denervation of smooth muscle cells which alters the biomechanical properties of the tissue. ‘Balloon distension’ is a specialised experimental protocol performed on hollow organs to investigate their biomechanical properties. A balloon is inserted and pressurized during this procedure and the change in external diameter is monitored as a function of the applied pressure. A hyperelastic framework is often used in this context to evaluate the stresses in the wall after inflation. However, this only gives an idea about the final equilibrium state of the tissue, whereas the intermediate states of deformations are overlooked. GI soft tissues are viscoelastic, thus, the stress values during inflation are loading rate dependent and are higher than the equilibrium state values. Therefore, it is necessary to consider the time- and rate-dependent material properties during a balloon distension test. The aim of this work was to develop a viscoelastic framework for interpreting balloon distension experiments under finite deformation. To demonstrate the efficacy of the framework, it was used to recreate experimental results from intestinal and colonic tissue segments. In all cases, the simulation results were well matched (R2>0.9) with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.