Abstract

The viscoelastic behavior of carbon-black-filled rubber under small oscillatory loads superimposed on large static deformation is dealt with. In this class of problems, as the strain amplitudes of the load increase, the dynamic stiffness decreases, and this phenomenon is known as the Payne effect. Besides the effects of the static deformation and the frequencies of the superimposed dynamic load, the Payne effect is considered in this study. Influence factors are introduced in this model in order to consider the influence of static predeformation, the dynamic-strain-dependent properties, and frequency-dependent properties. For simplicity, separation of the three dominant variables, frequency, prestatic deformation, and dynamic amplitude of strain, is assumed. The Kraus model is used for describing the Payne effect. Dynamic tension tests are executed to obtain the model parameters and also for the verification of the proposed model. The suggested constitutive equation shows reasonable agreement with test data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.