Abstract

ABSTRACT Recent studies indicate that the Bacillus species is distributed in deep-sea environments. However, no specific studies on deep-sea Bacillus cereus have been documented. In the present work, we isolated a B. cereus strain, H2, from the deep-sea cold seep in South China Sea. We characterized the pathogenic potential of H2 and investigated H2-induced death of different types of cells. We found that H2 was capable of tissue dissemination and causing acute mortality in mice and fish following intraperitoneal/intramuscular injection. In vitro studies revealed that H2 infection of macrophages induced pyroptosis and activation of the NLRP3 inflammasome pathway that contributed partly to cell death. H2 infection activated p38, JNK, and ERK, but only JNK proved to participate in H2-triggered cell death. Reactive oxygen species (ROS) and intracellular Ca2+ were essential to H2-induced activation of JNK and NLRP3 inflammasome. In contrast, lysosomal rupture and cathepsins were required for H2-induced NLRP3 inflammasome activation but not for JNK activation. This study revealed for the first time the virulence characteristics of deep-sea B. cereus and provided new insights into the mechanism of B. cereus infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call